

**SECTION 6.00
WATER DISTRIBUTION**

SUB-INDEX

6.01 WATER DISTRIBUTION PIPE

- A. General**
- B. Design**
- C. Material**
- D. Installation**

6.02 FIRE HYDRANTS

- A. Location**
- B. Specifications**
- C. Installation**
- D. Relocation**
- E. Fire Flow Requirements for Buildings**

6.03 VALVES AND APPURTENANCES

- A. Location**
- B. Specifications**
- C. Installation**

6.04 WATER SERVICE TAPS

- A. Materials**
- B. Individual Water Services**

6.05 CLEARANCE BETWEEN WATER MAINS, SANITARY AND STORM SEWERS

6.06 BACKFLOW PREVENTION AND CROSS CONNECTION

- A. General**

6.07 AUTOMATIC FIRE SPRINKLER SYSTEMS

- A. General**
- B. Design**
- C. Post Indicator Valve**
- D. Backflow Prevention**
- E. Fire Department Connection**

- F. Dedicated Riser Room**
- G. Access**
- H. Identification**
- I. Installation**
- J. Fire Alarm Panel Location**

6.08 FIRE DEPARTMENT ACCESS

- A. Fire Access and Fire Lanes**
- B. Gates**
- C. Two Points of Access**
- D. Fire Lanes**
- E. Fire Safety During Construction**

6.09 TESTING AND INSPECTION

- A. Hydrostatic Testing**
- B. Chlorination**
- C. Bacteriological Sampling**

6.10 FIRE PROTECTION DURING CONSTRUCTION

6.11 IRRIGATION SYSTEMS

6.12 REPAIR OF WATER LINES

SECTION 6.00

WATER DISTRIBUTION

6.01 WATER DISTRIBUTION PIPE

A. General

Water system expansions shall meet all requirements of these standards. In addition, the *North Carolina Administrative Code Title 15A Chapter 18 Subchapter C – Water Supplies* (15A NCAC 18C) is hereby incorporated into the Town's standards for water system expansions. This specification section identifies minimum equipment and construction requirements for water system expansions that are to be owned and operated by the Town of Holly Springs. This section does not address every aspect of water system expansion; it is the design engineer's (Designer's) responsibility to supplement these requirements as necessary to produce a complete set of plans and specifications.

All utility extension permits must be obtained prior to construction. Refer to the Town Code of Ordinances Section 16 for further requirements.

B. Design

Location: Water lines shall be extended along the entire roadway frontage length of any proposed project. All public water mains shall be located within dedicated right of way or dedicated easements with a minimum width of 20 feet. Landscape plantings, fences, or structures shall not be allowed within water line easements.

Sizing: Water lines shall be sized in accordance with the Town's "Comprehensive Plan" or as directed by the Executive Director of Utilities and Infrastructure Services. In residential areas, mains shall be 6-inch and 8-inch diameters. Six-inch mains shall be used only when a good grid exists. The total maximum length of 6-inch and 8-inch line, without connection to a larger main, is 1200 feet and 2000 feet, respectively. Four-inch water mains are permitted on residential cul-de-sacs less than 400 feet long, if no hydrant is required. Where a sufficient grid network does not exist, lines shall be upsized additionally to provide adequate fire flow as directed by the Executive Director of Utilities and Infrastructure Services. If there is adjacent developable property, an adequate size line to properly serve future development shall be provided sufficient for any future project to meet Town standards.

C. Material

All water mains shall be ductile iron. The use of Polyvinyl Chloride (PVC) pipe must be approved by the Executive Director of Utilities & Infrastructure Services,

and, if approved, must be blue in color and conform to the specifications of AWWA C900. The Engineering Department will maintain a list of approved manufacturers of other water distribution products. New manufacturers must submit requests for approval to the Engineering Department. Additional information such as catalogs, list of installations in the area, or material samples may be required. A written response will be mailed to the applicant accepting or rejecting the product within 90 days of the receipt of all necessary information.

Ductile Iron Pipe shall be designed and manufactured in accordance with AWWA C150 and C151 for a laying condition Type 2 and a working pressure as follows:

3-12 inches	350 psi
14-20 inches	250 psi
24 inches	200 psi
30-54 inches	150 psi

Pipe Joints shall be of the push-on type as per AWWA C111. Pipe lining shall be cement mortar with a seal coat of bituminous material in accordance with AWWA C104. Galvanized steel pipe will not be allowed as a material for water mains or water services lines.

Steel Encasement for water/sewer pipes are required for the following Street Classifications to avoid traffic disruption in the future:

- Controlled Access Highway

For carrier pipes that employ cathodic protection anticorrosion systems, the carrier and casing pipes shall be effectively insulated from one another. Carrier and casing shall be cathodically protected as a unit.

See Section 5.03 Boring and Jacking for more casing pipe size requirements.

D. Installation

Ductile iron pipe shall be manufactured and installed in accordance with requirements set forth in the most recent revision of AWWA C600/C605 and the Rules Governing Public Water Systems. Materials shall be handled in such a manner to protect them from damage at all times.

All water mains shall be installed with a minimum cover of 4 feet and maximum of 6 feet measured from the top of the pipe to the finished surface grade (or as otherwise directed by Executive Director of Utilities and Infrastructure Services). Where waterlines cross NCDOT roadways or major Town roadways, as determined by the engineer, pipe encasement shall be required. When water lines are installed along a roadway which does not have curb and gutter or which are planned to be widened in the future, the water line shall be installed at 4.5 feet minimum depth below edge of existing pavement. In addition, all waterline installation shall be

placed to prevent conflict with future road improvements or foreseeable vertical alignment changes. Where air release valves are located on water mains the lines should be a minimum of 6 feet below the existing edge of pavement in this area.

The laying conditions for ductile iron pipe shall be certified by a Professional Engineer licensed in the State of North Carolina and installed in accordance with AWWA C600 and the Ductile Iron Pipe Research Association.

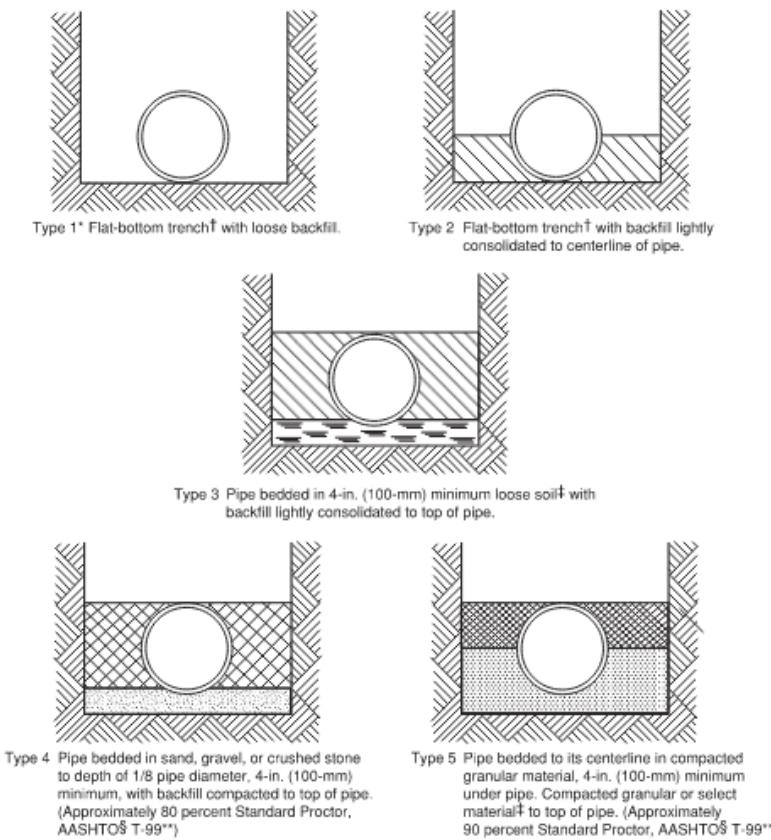


Figure 1: Laying Conditions for Ductile Iron Pipe (AWWA C600)

Locater devices as manufactured by 3M Corporation shall be placed directly on top of distribution water mains along major thoroughfares and cross-country installations (and as otherwise directed by the Executive Director of Utilities and Infrastructure Services) at 100 foot intervals and turns/bends. Locater tape shall also be required to be installed at 2 feet above the pipe.

All construction relating to the utility improvements which will be maintained by the Town must be performed by a contractor licensed in North Carolina. Proof of licensure will be required at the Project Preconstruction Meeting. Operation of existing valves and fire hydrants shall be by Town staff only.

. Town water mains that are 16-inches or greater are considered water transmission mains. Service connections to the Town's water transmission mains are prohibited. A proposed water main connection to the Town's water transmission mains requires an exception granted by the Executive Director of Utilities & Infrastructure. All requests are subject to completing a hydraulic study to confirm adequate pressure can be maintained in the system.

6.02 FIRE HYDRANTS (Public and Private)

A. Location

All fire hydrants shall be installed on a minimum 6-inch waterline with minimum of 20' width easement including 5 feet beyond fire hydrant. Only 1 fire hydrant may be installed on a dead end 6-inch line. There shall be at least 1 fire hydrant at each street intersection located in accordance with the Standard Detail section of these Standards (TOHS Detail HS613). Each fire hydrant shall have a valve on the hydrant service leg, located within 2 feet of tee on the main line.

No building lot shall be more than 350' from fire hydrant.

In residential areas, the maximum distance between fire hydrants, measured along street centerlines, shall be 500 feet. In residential areas, the minimum fire flow shall be 1000 gpm with a minimum system pressure of 25 psi for 1 hour.

In business, office and institutional, and industrial districts, the maximum distance between hydrants, measured along street centerline, shall be 300 feet. When business, office and institutional, and industrial intersections are not more than 450 feet apart, no hydrant is required between intersections. The minimum fire flow in these areas shall be 1500 gpm with a minimum system pressure of 25 psi for 2 hours.

The minimum number of fire hydrants available to a building shall not be less than that listed in Table A1. The number of fire hydrants available to a complex or subdivision shall not be less than that determined by spacing requirements listed in Table A1 when applied to fire apparatus access roads and perimeter public streets from which fire operations could be conducted.

Existing fire hydrants on public streets are allowed to be considered as available. Existing fire hydrants on adjacent properties shall not be considered available unless fire apparatus access roads extend between properties and easements are established to prevent obstruction of such roads.

The average spacing between fire hydrants shall not exceed that listed in Table A1.

Exception: The Office of the Fire Marshal is authorized to accept a deficiency of up to 10 percent where existing fire hydrants provide all or a portion of the required fire hydrant service.

Regardless of the average spacing, fire hydrants shall be located such that all points on streets and access roads adjacent to a building are within the distances listed in Table A1.

Table A1
NUMBER AND DISTRIBUTION OF FIRE HYDRANTS

FIRE-FLOW REQUIREMENTS (gpm)	MINIMUM NUMBER OF HYDRANTS	AVERAGE SPACING BETWEEN HYDRANTS (Feet) ^{a, b, c}	MAXIMUM DISTANCE FROM ANY POINT ON STREET OR ROAD FRONTAGE TO A HYDRANT ^d
1,750 or less	1	300	250
2,000-2,250	2	300	225
2,500	3	300	225
3,000	3	300	225
3,500-4,000	4	300	210
4,500-5,000	5	300	180
5,500	6	300	180
6,000	6	250	150
6,500-7,000	7	250	150
7,500 or more	8 or more ^e	200	120

^a. Reduce by 100 feet for dead-end streets or roads.

^b. Where streets are provided with median dividers that cannot be crossed by fire fighters pulling hose lines, or where arterial streets are provided with four or more traffic lanes and have a traffic count of more than 30,000 vehicles per day, hydrant spacing shall average 500 feet on each side of the street and be arranged on an alternating basis.

^c. Where new water mains are extended along streets where hydrants are not needed for protection of structures or similar fire problems, fire hydrants shall be provided at spacing not to exceed 1,000 feet to provide for transportation hazards.

^d. Reduce by 50 feet for dead-end streets or roads.

^e. One hydrant for each 1,000 gallons per minute or fraction thereof.

When new buildings are constructed, or existing buildings expanded, all points of exterior walls for buildings shall be within 150' of a fire access lane. When a fire access lane is provided then all portions of exterior walls are required to be within 300' of a hydrant. The maximum length of fire access lanes without an approved turn-a-round is 150'. Hydrants shall be located at least 40 feet from the building or as specified by the Town of Holly Springs Fire Department, Office of the Fire Marshal. See Section 6.07E for fire hydrants required for automatic fire sprinkler systems.

Where sprinkler systems or standpipe systems are used, the fire department connections (FDC) shall be located on the street side of the building and within 100 feet of a fire hydrant and at fall zone line or as specified by the Office of the Fire Marshal, and shall be located so that nothing obstructs direct access. Where a sprinkler system or a riser room are required, outside access in accordance with the N.C. Building Code shall be provided. Backflow prevention for sprinkler systems shall be as specified in Section 6.06 of these Standards. Flow data for system design shall be field-verified by the designer. The Town will provide assistance with opening valves and hydrants for the collection of data for system design. FDC's can be mounted on single story buildings only.

A hydraulic report signed, sealed, and dated within 12 months by an Engineer may be required by the Town to document meeting the minimum fire flow and system pressure requirements. On all thoroughfares and collectors with access points only at street intersections, hydrants shall be located at each street intersection and staggered at 1000 foot intervals along the street. Where these intersections are less than 1200 feet apart, no hydrant is required between the intersections.

B. Specifications

Hydrants shall conform to AWWA C502 with a minimum valve opening of 4½ inches. All fire hydrants shall be furnished with a 5 inch Storz/quick connect coupling on the steamer outlet with a chained cap. The Storz connection shall be by the hydrant manufacturer and only come as part of the hydrant assembly. No adapters for the Storz connection are allowed. Hydrants shall also be furnished with: double 2½-inch hose connections with caps and chains, National Standard Threads, mechanical joint, 1½-inch pentagon operating nut, open left, painted Sherwin Williams pro industrial urethane alkyd enamel safety yellow B54 Y157, bronze to bronze seating, a minimum 3½-foot bury depth with break away ground line flange and break away rod coupling. The hydrant bonnet will be designed with a sealed oil or grease reservoir with O-ring seals and a Teflon thrust bearing, as furnished by Mueller "Centurion" (A-421), Kennedy 'Guardian', American Darling (MK-73), Clow or Waterous. Fire hydrant caps shall be attached to the body of the hydrant with a minimum 2/0 twist link, heavy duty, non-kinking, machine chain. All fire hydrants shall be designed for a working pressure of 250 psi or greater.

All hydrants and Fire Access Lanes shall be installed and operational before any combustible material is brought onto the site.

C. Installation

Hydrants shall be set plumb, properly located with the pumper nozzle facing the closest curb. The back of the hydrant opposite the pipe connection shall be firmly blocked against the vertical face of the trench with 1/3 cubic yard of concrete. Double bridle rods and collars shall not be less than 5/8 inch diameter stock and coated with bituminous paint. All fire hydrants shall be newly painted in accordance with NFPA standards. A minimum of 8 cubic feet of stone shall be placed around the hydrant. The backfill around the hydrants shall be thoroughly compacted. Hydrant installation shall be in accordance with the Standard Details section of these Standards. Fire hydrants shall be installed on a clear level space with a minimum of five (5) feet clearance provided and maintained on all sides of a fire hydrant for immediate access. There must be clearance with a minimum of 18"-24" from center of 5" Storz cap to grade and shall be installed with positive drainage.

D. Relocation

For installations where hydrants will be relocated, all hydrants with greater than 20 years operational service, as indicated by the date of manufacture provided on the hydrant, shall be replaced with a new fire hydrant in accordance with Engineering Design and Construction Standards. The fire hydrant being replaced shall be returned to the Town of Holly Springs Public Works Department.

For installations where the hydrant to be relocated has less than 20-years of operational service, the existing hydrant may be relocated. The existing hydrant shall be disinfected, flushed and pressure tested prior to being placed back into service.

E. Fire Flow Requirements for Buildings

1. One- and two-family dwellings

The minimum fire-flow and flow duration requirements for one-and two-family dwellings having a fire-flow calculation area that does not exceed 3,600 square feet (344.5m²) shall be 1,000 gallons per minute at 25psi for 1 hour.

Fire-flow and flow durations for dwellings having a fire-flow calculation area in excess of 3,601 square feet and greater shall not be less than specified in tables E1 and E2 at 25psi.

2. Buildings other than one- and two-family dwellings.

The minimum fire-flow and flow duration for buildings other than one-and two-family dwellings shall be as specified in tables E1 and E3, but no less than 1,500 gallons per minute at 25psi.

3. Water supply for buildings equipped with an automatic sprinkler system.

For building equipped with an approved automatic sprinkler system, the water supply shall be capable of providing the greater of:

1. The automatic sprinkler system demand, including hose stream allowance.
2. The required fire-flow.

Table E1**MINIMUM REQUIRED FIRE-FLOW AND FLOW DURATION FOR
BUILDINGS**

(Appendix B of the 2018 NC Fire Prevention Code)

FIRE-FLOW CALCULATION AREA (square feet)					FIRE-FLOW (gallons per minute) ¹	FLOW DURATION (hours)
Type 1A and 1B ²	Type IIA and IIIA ^a	Type IV and V-A ^a	Type IIB and IIIB ^a	Type V-B ^a		
0-22,700	0-12,700	0-8,200	0-5,900	0-3,600	1,500	2
22,701-30,200	12,701-17,000	8,201-10,900	5,901-7,900	3,601-4,800	1,750	
30,201-38,700	17,001-21,800	10,901-12,900	7,901-9,800	4,801-6,200	2,000	
38,701-48,300	21,801-24,200	12,901-17,400	9,801-12,600	6,201-7,700	2,250	
48,301-59,000	24,201-33,200	17,401-21,300	12,601-15,400	7,701-9,400	2,500	
59,001-70,900	33,201-39,700	21,301-25,500	15,401-18,400	9,401-11,300	2,750	
70,901-83,700	39,701-47,100	25,501-30,100	18,401-21,800	11,301-13,400	3,000	
83,701-97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401-15,600	3,250	
97,701-112,700	54,901-63,400	35,201-40,600	25,901-29,300	15,601-18,000	3,500	
112,701-128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001-20,600	3,750	
128,701-145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601-23,300	4,000	3
145,901-164,200	82,101-92,400	52,501-59,100	37,901-42,700	23,301-26,300	4,250	
164,201-183,400	92,401-103,100	59,101-66,000	42,701-47,700	26,301-29,300	4,500	
183,401-203,700	103,101-114,600	66,001-73,300	47,701-53,000	29,301-32,600	4,750	
203,701-225,200	114,601-126,700	73,301-81,100	53,001-58,600	32,601-36,000	5,000	
225,201-247,700	126,701-139,400	81,101-89,200	58,601-65,400	36,001-39,600	5,250	
247,701-271,200	139,401-152,600	89,201-97,700	65,401-70,600	39,601-43,400	5,500	
271,201-295,900	152,601-166,500	97,701-106,500	70,601-77,000	43,401-47,400	5,750	
295,901-Greater	166,501-Greater	106,501-115,800	77,001-83,700	47,401-51,500	6,000	
—	—	115,801-125,500	83,701-90,600	51,501-55,700	6,250	
—	—	125,501-135,500	90,601-97,900	55,701-60,200	6,500	
—	—	135,501-145,800	97,901-106,800	60,201-64,800	6,750	
—	—	145,801-156,700	106,801-113,200	64,801-69,600	7,000	
—	—	156,701-167,900	113,201-121,300	69,601-74,600	7,250	
—	—	167,901-179,400	121,301-129,600	74,601-79,800	7,500	
—	—	179,401-191,400	129,601-138,300	79,801-85,100	7,750	
—	—	191,401-Greater	138,301-Greater		85,101-Greater	4

- a. Types of construction are based on the NC Building Code
- b. Fire-Flow is measured at 25 psi residual pressure.

TABLE E2

**REQUIRED FIRE-FLOW FOR ONE-AND
TWO-FAMILY DWELLINGS**

FIRE-FLOW CALCULATION AREA (square feet)	AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE- FLOW (gallons per minute)	FLOW DURATION (hours)
0-3,600	No automatic sprinkler system	1,000	1
3,601 and greater	No automatic sprinkler system	Value in Table E1	Duration in Table E1 at the required fire-flow rate
0-3,600	Section 903.3.1.3 of the NC Fire Code Section P2904 of the NC Residential Code	1,000	Duration in Table E1 at the required fire-flow rate
3601 and greater	Section 903.3.1.3 of the NC Fire Code Section P2904 of the NC Residential Code	1/2 value in Table E1 but no less than 1,000	1

Table E3

REQUIRED FIRE -FLOW FOR BUILDINGS OTHER THAN ONE-TWO FAMILY DWELLINGS

Automatic Sprinkler System (Design Standard)	MINIMUM FIRE-FLOW (gallons per minute)	FLOW DURATION (hours)
No automatic sprinkler system	Value in Table E1	Duration in Table E1
Section 903.3.1.1 of the NC Fire Code	25% of the value in Table E1 but no less than 1,500	Duration in Table E1 at the reduced flow rate
Section 903.3.1.2 of the NC Fire Code	25% of the value in Table E1 but no less than 1,500	Duration in Table E1 at the reduced flow rate

6.03 VALVES AND APPURTENANCES

A. Location

Valves shall be installed on all branches from feeder mains and hydrants according to the following schedule: 4 valves at crosses; 3 valves at tees; and 1 valve on each hydrant branch. When a loop section of waterline is connected back into the feeder main within a distance of 200 feet or less, only 1 valve will be required in the feeder main.

Where no waterline intersections are existing, a main line valve shall be installed at every 100 feet per 1-inch diameter main up to a distance of 2000 feet between valves.

Blowoff assemblies shall be a minimum of 2 inches and installed at the end of all dead-end waterlines. Where there is not sufficient pressure or fire hydrants located to thoroughly flush the system, a larger blowoff may be required. On large diameter mains or other circumstances, larger blowoffs may be required by the Executive Director of Utilities and Infrastructure Services.

Combination air valves shall be installed at high points of waterlines 12 inches in diameter or larger, as directed by the Executive Director of Utilities and Infrastructure Services. All new air release valves shall be installed in precast manholes. Existing lines in which an air release valve is installed can use a dog house manhole. Water lines shall be installed at a grade which will allow the air to migrate to a high point where the air can be released through an air valve. A minimum pipe slope of 1 foot in 500 feet should be maintained. The size of air valve shall be designed by a Professional Engineer registered in North Carolina. Combination air valves or other types of air release valves may be required at other locations as directed by the Executive Director of Utilities and Infrastructure Services.

All new construction air release manholes shall be a precast manhole. Doghouse manholes can only be installed on existing water lines.

Water lines crossing stream beds will be required to be installed with restrained joint pipe inside a steel encasement pipe.

B. Specifications

Gate Valves greater than 2 inches shall meet all requirements of AWWA C500 for a working pressure of 150 psi. All shall be mechanical joint with iron body, resilient wedge seat type in accordance with AWWA C509 with a non-rising stem and open left with a double O-ring seal. Gate valves shall be installed in a vertical position.

Valve Boxes shall be cast iron of the screw or telescopic type with a 5-inch opening with “water” stamped on the cover. Valve box ring adjustments will not be allowed. Locking valve boxes may be required as determined by the Executive

Director of Utilities and Infrastructure Services. All castings shall be made in the United States.

Butterfly Valves shall be installed in waterlines 24 inches or greater. All shall meet the requirements of AWWA C504 with mechanical joints, 2-inch operating nut and open left.

Blowoff Assemblies shall be constructed as shown in the Standard Details Section of these Standards. The valves shall be an AWWA iron body gate valve with a non-rising stem and a 2-inch operating nut.

Pipe Fittings shall be compact fittings in accordance with AWWA C153. Joints for fittings shall be mechanical joint and lined with cement mortar with a seal coat of bituminous material, all in accordance with AWWA C104.

Reaction Blocking for all fittings or components subject to hydrostatic thrust shall be securely anchored by the use of concrete thrust blocks poured in place. The required reaction areas are shown in the Standard Details Section of these Standards. Concrete shall be installed so that it does not interfere with the removal of fittings. Material for reaction blocking shall be 3000 psi concrete. Alternative restraining methods may be considered only in unusual circumstances and must be designed by a Professional Engineer registered in North Carolina and approved by the Executive Director of Utilities and Infrastructure Services.

Tapping Sleeves shall be stainless steel sleeves with stainless steel flanges meeting the material requirement of AWWA C223 and AWWA C228. The sleeves shall be mechanical joint to the main line and flanged to the tapping valve. Mechanical joint outlet connections shall be compatible with ANSI/AWWA C111/A21.11.

Tapping Saddles shall be used on mains 16 inches and larger. Saddles shall be made of stainless steel providing a factor of safety of 2.5 with a working pressure of 250 psi. Saddles shall be equipped with an AWWA C110 flange connection on the branch. Sealing gaskets shall be O-ring type, high quality molded rubber having an approximate 70 durometer hardness, placed into a groove on the curved surface of the saddles. Straps shall be alloy steel.

The maximum size saddle outlet for each size of pipe to be tapped shall be as follows:

Size pipe to be tapped	Maximum size saddle outlet
16"	8"
18"	8"
20"	10"
24" and larger	12"

Combination Air Valves shall be of the single housing style that combines the operation of both an air/vacuum and air release valve. The valve shall be manufactured for a 150 PSIG working pressure and be sized by the Engineer. The valve must meet the requirements of AWWA C512 and be installed in accordance with the Standard Details Section of these Standards.

C. Installation

Valves shall be properly located, operable and at the correct elevation. All valves and reducers shall be rodded to a nearby tee or cross if possible. As shown in the Standard Details Section of these Standards. If reducers cannot be rodded, concrete blocking or other restraining methods will be required. The valve box shall be centered over the wrench nut and seated on compacted backfill without touching the valve assembly. The maximum depth of the valve nut shall be 5 feet, unless approved by the Executive Director of Utilities & Infrastructure Services. When valve extension kits are used, they must be manufactured by the same company which manufactured the valve.

All valve boxes in roadways shall be encased in a trowel-finished 30" diameter circle by 12" thick circular pad of 3000 psi concrete beneath the asphalt course with the cover flush with the top of the pavement.

Valve boxes outside roadways shall be flush with finished grade with a 2'x2'x6" concrete encasement or precast concrete donut.

Precast concrete valve box encasements may be used for valve box encasement outside of paved areas only.

6.04 WATER SERVICE TAPS

A. Materials

Corporation Stops shall be brass, complete with a flared or compression coupling and AWWA Standard threads as per AWWA C800. Taps shall be located at 10 or 2 o'clock on the circumference of the pipe. Service taps shall be staggered alternating from one side of the water main to the other, and at least 12 inches apart. The taps must be a minimum of 24 inches apart if they are on the same side of the pipe.

The maximum size of direct taps without a fitting, tapping sleeve or saddle for ductile iron water mains shall be as follows:

4" main - 3/4" tap
6" main - 1" tap
8" main - 1 1/4" tap

10" main - 1½" tap
12" main - 2" tap

No burned taps will be allowed and each corporation stop will be wrapped with Teflon tape for ductile iron pipe water mains.

Service Saddles shall be bronze body (85-5-5 waterworks brass) and double strap for taps with silicon bronze nuts conforming to ASTM A98 and factory-installed grade 60 rubber gaskets.

Copper Service Tubing shall be type K soft copper tubing per ASTM B88. The longest available length of service line should be used with no unions. As an example, for a ¾-inch service connection, no union shall be used in the installation of 100 feet or less. Unions shall be made with flare type couplings.

Meter Boxes for ¾-inch Services shall be 18 inch depth cast iron MBX-1 and a complete unit (less meter) for setting a 5/8 by 3/4-inch water meter. Meter box grade adjuster rings are not acceptable.

Meter Boxes for 1-inch Services shall be 18 inch depth cast iron box and cover with a meter yoke and/or copper resetter. Meter box grade adjuster rings are not acceptable.

Meter Boxes for 1½ and 2-inch Services shall be lightweight polymer concrete as indicated in the Standard Details Section of these Standards. Piping for 1½ and 2-inch water meters shall be constructed from brass and copper tubing and shall be equipped with angled check valve outlets and by-pass flanged valve or by-pass flanged ball valve inlets. Meter boxes shall not be allowed in travel lanes or traffic areas. Meter box grade adjuster rings are not acceptable.

Meters for ¾" services shall meet the requirements of AWWA C700 and be supplied and installed by the Town of Holly Springs.

Meters for services 1 inch and greater shall meet the requirements of AWWA C700 and be paid for by the Developer and installed by the Town of Holly Springs Public Works Department after approval by the Executive Director of Utilities and Infrastructure Services. **Meters 2 inches and greater** shall require a 2 inch bypass and shall require a meter test port. A strainer shall be provided upstream of the meter.

Meter Boxes shall not be located in sidewalk or travel lanes, except as noted below.

Meter Vaults within paved areas shall meet HS-20 loading requirements and shall be located outside travel areas. The access door shall be aluminum with a flush drop lift handle, stainless steel hinges and bolts, a stainless steel slam lock, an automatic hold open arm, and compression springs to allow for easy opening.

Positive drainage shall be provided for all meter vaults. Positive drainage shall be construed to mean a “daylight” drain not less than 4” schedule 40 PVC pipe with flap valve on the end. Vault dimensions must be sized to ensure pipe work will fit within the vault. When installing pipe work, ensure it is spaced evenly within the vault.

All vaults over 2” in size shall be in below ground vault unless in riser room.

B. Individual Water Services

Individual water services shall be provided from the main to each water meter for single family residences in accordance with the Standard Details section of these Standards. Multi-family units may be in accordance with the Standard Detail for multi-family units in the Standard Details section of these Standards. All connections shall be made by wet taps.

Service connections shall be made perpendicular from the main line and shall run straight horizontally toward the meter and then vertically to the meter which shall be located at the edge of the right of way or easement of the served property. Refer to the standard detail on water service installations for more information. No water meter box or vault shall be located in streets, sidewalks, or parking areas in residential areas. For non-residential development, individual services are required for each business space. In non-residential areas, meter locations shall be approved on a case-by-case basis. Provisions for backflow prevention shall be as specified in Section 6.06 of these Standards.

All water service connections to existing and new water mains shall be made by a licensed Contractor in the State of North Carolina and in accordance with these Standards.

Water meters shall be sized based on water demand. Water meter size shall be determined from the following table; or as otherwise specified by the Executive Director of Utilities and Infrastructure Services. All non-residential projects shall submit sealed calculations prepared in conformance with the AWWA Manual of Practice for approval of type of meter and meter size by the Town.

WATER METER SIZING

Meter Size (inches)	Flow Range (GPM)	Load Range (number of fixture units)	
		Supply Systems Predominately for Flush Tanks	Supply Systems Predominately for Flush Valves
5/8" PD	0 - 20	1 - 22	1 - 8
1" PD	20 - 50	22 - 140	9 - 50
1½" PD	50 - 100	140 - 450	50 - 275
2" C	100 - 200	450 - 1000	275 - 1000
3" C	200 - 400	1000 - 2500	1000 - 2500
4" C	400 - 600	2500 - 5000	2500 - 5000

PD = Positive Displacement

T = Turbine (may be required on a case-by-case basis)

C = Compound (must be sized on a case-by-case basis)

6.05 CLEARANCE BETWEEN WATER MAINS, AND NON-POTABLE WATER LINES

Water mains shall be laid at least 10 feet laterally (measured edge to edge) from existing or proposed sanitary sewer unless local conditions or barriers prevent a 10-foot lateral separation--in which case:

- (1) The water main is laid in a separate trench, with the elevation of the bottom of the water main at least 18 inches above the top of the sewer; or
- (2) The water main is laid in the same trench as the sewer with the water main located at one side on a bench of undisturbed earth, and with the elevation of the bottom of the water main at least 18 inches above the top of the sewer.

Water mains shall be laid at least 10 feet laterally (measured edge to edge) or 18-inches above existing or proposed reclaimed water distribution lines, in accordance with the most recent revision to 15A NCAC 18C .0906 (e).

A water main that crosses a sewer/reclaimed line shall be laid a minimum vertical distance of 18 inches from the outside of the water main and the outside of the sewer/reclaimed, either above or below the sewer/reclaimed, with preference to the water main located above the sewer/reclaimed. One full length of water pipe shall be located so that both joints will be as far from the sewer/reclaimed as possible.

When water mains must cross sewer mains, the water mains shall cross at an approximate 90° angle unless adequate vertical separation is provided.

Where it is infeasible to maintain the required 18 inches of vertical separation between a water main and a sanitary sewer main, a Professional Engineer licensed in the state of North Carolina can submit justification of the deviation according to special conditions listed under the most recent revision of 15A NCAC .0906 (c) and .0906 (f).

To allow for construction and repair, a minimum distance of 12 inches shall be maintained between the outside of the water main and the outside of all other utilities. Where it is infeasible to maintain the required 12 inches of vertical separation between a water main and other utilities, a Professional Engineer licensed in the state of North Carolina must seek to defend a special consideration per 15A NCAC .0904(c).

Water lines that cross and run beneath storm drainage pipes that are greater than or equal to 42" diameter (single pipe) or 36" diameter (multiple pipes) and/or streams or creeks shall be installed as restrained joint pipe and enclosed in casing pipe. A minimum cover of 5 feet shall be provided over the pipe for underwater stream crossings, in accordance with the Recommended Standards for Water Works (Ten State Standards) and the Rules Governing Public Water Systems. Installation may be by bore and jack or excavation at discretion of Executive Director of Utilities and Infrastructure Services.

For required separation and clearance from water main to reclaimed water reference Section 11.00.

6.06 BACKFLOW PREVENTION AND CROSS CONNECTION

A. General

Cross-Connection shall mean any unprotected actual or potential connection or structural arrangement between a public or a consumer's water system and any other source or system through which it is possible to introduce any contamination or pollution, other than the intended potable water with which the system is supplied. All construction shall be required to comply with the Town of Holly Springs Ordinance for the Control of Backflow and Cross-Connection No. 03-09 in its entirety, in addition to the following:

All residential water services for domestic purposes shall be provided with a dual check backflow prevention device on the meter setter within the meter box. Dual check valves must comply with AWWA Standard C-510.

All irrigation services and non-residential services shall be provided with reduced pressure principle backflow prevention installed in accordance with the State of North Carolina and the Foundation for Cross Connection Control and Hydraulic Research at the University of South Carolina (USC) and AWWA Standard C-511.

This includes all service connections to fire sprinkler systems. Reduced pressure zone (RPZ) backflow preventers shall be installed aboveground immediately behind the meter (on the private side). Alternate installations shall comply with Town Ordinance 03-09 as noted above, and require approval of the Executive Director of Utilities and Infrastructure Services. Above-ground installations that service any use other than single family residential users will require an insulated box mounted on a 4" concrete slab, wired for a heater and provided with a heater. A 4" concrete slab shall be provided for underground RPZ's and for insulated boxes.

6.07 AUTOMATIC FIRE SPRINKLER SYSTEMS

A. General

Working drawings and calculations for all fire sprinkler systems and standpipe systems, prepared by a Professional Engineer registered in North Carolina, shall be submitted to the Town of Holly Springs Inspection Department for approval before installation begins.

B. Design

Approved working plans shall be in complete compliance with NFPA No. 13, 13D, 13R, 14, 231, 231C, 231F and Town specifications. A NFPA above ground material and test certificate, and a NFPA underground material and test certificate are required after completion of designated and approved work. Design shall include backflow prevention measures, details on any proposed fire pumps and/or tanks, calculations to ensure that the allowable pressures in the Town system are maintained. Flow data for system design shall be field-verified by the designer. The Town will provide assistance with opening valves and hydrants for the collection of data. Fire lanes are required in front of all FDC, Riser Rooms, Fire Hydrants, PIV, and other entrances and exits as determined by the Town or Office of the Fire Marshal.

C. Post Indicator Valve (PIV)

A post indicator valve (PIV) shall be provided on the Town's side at the right of way or edge of easement. The valve shall be locked in open position monitored by an electronic tamper switch. When backflow prevention devices are contained within a building, an outside access (above the finish floor elevation) shall be provided. The top of the post indicator valve shall be installed at 30-42 inches from the finished grade, minimum of 5' of unobstructed access perimeter shall be maintained around the PIV and must be protected from vehicular obstruction. The Town shall maintain up to, but not including, the post indicator valve. The post indicator valve shall be painted red and must be protected from vehicular obstruction with means of steel bollards when not located behind curb. In urban settings, a wall mounted indicator valve may be used where there is no suitable

location for a post mounted indicator valve. Wall mounted indicator valves shall be centered 30-42 inches above the finished grade. It shall be greater than 10 feet from any door, window or protected opening along the wall.

Post indicator valve is to be located as close as possible to the tap of the water main.

D. Backflow Prevention

When a fire protection system is proposed an RPZ type backflow prevention device as approved by USC (with make and model specified) shall be required. RPZ's shall be located inside a riser room in a location shown on the construction plans. Existing structures shall be exempt from this section until such time any structure is sold, remodeled or improvements to the property exceeding the sum of \$2,500.00 are made, or a new occupancy permit is otherwise required for the property.

E. Fire Department Connection (FDC)

Where automatic fire sprinkler systems or standpipe systems are used, a Fire Department Connection (FDC) with check valve [reference detail section 6, HS625] shall be red in color, provided on the street side of buildings, fully visible and recognizable from the street or nearest point of fire department vehicle access or as otherwise approved by the Office of the Fire Marshal. The Fire Department Connection shall be located 36 inches above proposed grade and within 100 feet of a fire hydrant and at fall zone line or as specified by the Office of the Fire Marshall, and shall be located so that nothing obstructs direct access. A 5 foot clearance shall be provided around the FDC connection and labeled with 6 inch contrasting colored letters. When a sprinkler system serves only part of a large structure, the fire department connection shall be labeled as to which section of the structure that sprinkler riser serves. This labeling shall be a minimum of 2 inch lettering on a permanent sign. FDC shall have a 5" Storz connection with chained cap. FDC's can be mounted on single story buildings only.

F. Dedicated Riser Room

A dedicated sprinkler riser room providing an entry door to the room from the exterior of the building in accordance with NC Building Code shall be provided. All dedicated riser rooms shall be equipped with a floor drain sized appropriately to prevent flooding. The floor drain shall be piped to storm system or main building drain. The floor drain shall be provided with a circular raised ring/hub around the floor drain to prevent debris and/or chemicals from entering the drain during an emergency spill. The hub shall be fabricated of cast iron or other corrosion resistant material and extend at least 3 inches above floor elevation. The exterior riser room door plus all other required or Town designated fire exits shall have a protected clearance of 5 feet from any obstruction by vehicular movement by means of curbing, bollards, or concrete bumpers.

G. Access

Any building, other than a residential building with less than four units, shall have installed a “Knox Box”, a key box entry system per North Carolina Fire Code, to be used by the local fire department in case of emergency. The key box shall contain master keys necessary for access to all portions of the premises. The Office of the Fire Marshal may specify such supplemental information as floor plans, lists of chemicals and hazardous materials located within the building to be required within the Knox Box.

This Knox Box shall be mounted on the exterior entrance to the dedicated riser room or at the normal fire department entrance when there is no dedicated riser room. Mount Knox Box on wall at 5 feet A.F.F. on door handle side of dedicated riser room door or normal fire department entrance door. This Knox Box shall be ordered online at www.knoxbox.com and shall be in place before a Certificate of Occupancy is issued. Keys to access the facility shall be provided to the Town Fire Department by the owner/manager.

Existing structures shall be exempt from this section until such time as any such structure is sold, remodeled or improvements to the property, exceeding the sum of \$2,500.00, are made, or a new occupancy permit is otherwise required for the property.

H. Identification

The exterior door leading to the dedicated sprinkler riser room shall be labeled with minimum 4 inch lettering designating “SPRINKLER RISER ROOM” in a contrasting color. Durable vinyl lettering is suggested.

I. Installation

All gas or electrical panels must be protected with steel bollards from vehicular traffic.

J. Fire Alarm Panel Location

When a building is protected by an automatic sprinkler system and has a fire alarm system, the fire alarm control panel or a remote annunciation of the fire alarm control panel shall be placed in the sprinkler riser room. This control panel shall have the capacity of silencing and resetting. Adjacent to the fire alarm control panel shall be a mounted framed zone map, removable from the wall. Nomenclature shall correspond with the zone map.

When there is no sprinkler system in building, the fire alarm control panel or remote annunciator shall be located at the normal fire department entrance.

6.08 FIRE DEPARTMENT ACCESS

A. Fire Access and Fire Lanes

Fire Access

The following guidelines represent the Town's efforts to maintain consistency concerning Fire Department emergency access. It is the Town's responsibility to ensure adequate access for the Fire Department and other responding agencies. The Town therefore reserves the right to require modifications to established requirements if, in the Town's opinion, the access cannot be provided or may be compromised.

All access roadways shall be built to street standards as described in the Town's Engineering Design and Construction Standards. The roadway design shall be prepared and certified by a Design Professional. All required access roadways shall be properly maintained and kept clear for emergency use at all times. Any alternatives to these specifications shall be reviewed and approved by the Office of the Fire Marshal prior to construction.

FIRE APPARATUS ACCESS ROAD – A road that provides fire apparatus access from a fire station to a facility, building or portion thereof. This is a general term inclusive of all other terms such as fire lane, Public Street, Private Street, parking lot lane, alley ways and access roadway.

FIRE LANE – A road or other passageway developed to allow the passage of fire apparatus. A fire lane is not necessarily intended for vehicular traffic other than fire apparatus.

Approved fire apparatus access roads shall be provided for every facility, building or portion of a building hereafter constructed or moved into or within the jurisdiction. The fire apparatus access road shall comply with the requirements of the NC Fire Code and Town Standards and shall extend to within 150 feet of all portions of the facility or all portions of the exterior wall of the first story of the building as measured by an approved route around the exterior of the building or facility. The fire official is authorized to increase the 150 feet where:

The building is equipped throughout with an approved automatic sprinkler system installed in accordance with the NC Fire Code and applicable NFPA standards. Fire apparatus access roads cannot be installed due to location on property, topography, waterways, non-negotiable grades or other similar conditions, and an approved alternative means of fire protection is provided.

There are not more than two Group R-3 or Group U occupancies.

Fire department apparatus access to buildings used for high-piled combustible storage shall comply with the applicable provisions of the NC Fire Code.

Fire apparatus access roads shall have an unobstructed width of not less than 20 feet and an unobstructed vertical clearance of not less than 13 feet 6 inches.

The Office of the Fire Marshal shall have the authority to require an increase in the minimum access widths where they are inadequate for fire or rescue operations.

Fire apparatus access roads shall be designed and maintained to support the imposed loads of fire apparatus and shall be surfaced so as to provide all-weather driving capabilities.

Dead-end fire apparatus access roads in excess of 150 feet (45 720 mm) in length shall be provided with an approved area for turning around fire apparatus. Proposed turn around area shall not be located within proposed residential lots. See TOHS Detail HS367

Grass pavers are also an acceptable alternative to concrete, asphalt or gravel for the 120' Hammerhead or the acceptable alternative to the 120' Hammerhead. Specification and data sheets on the proposed pavers will need to be submitted to the Fire Department for approval

Where a bridge or an elevated surface is part of a fire apparatus access road, the bridge shall be constructed and maintained in accordance with AASHTO Standard Specification for Highway Bridges. Bridges and elevated surfaces shall be designed for a live load sufficient to carry the imposed loads of fire apparatus. Vehicle load limits shall be posted at both entrances to bridges when required by the code official. Where elevated surfaces designed for emergency vehicle use are adjacent to surfaces which are not designed for such use, approved barriers, approved signs or both shall be installed and maintained when required by the code official.

The grade of the fire apparatus access road shall be within the limits established by the Office of the Fire Marshal based on the fire department's apparatus.

B. Gates

Gates securing the fire apparatus access roads shall comply with all of the following criteria:

The minimum unobstructed gate width shall be 20 feet.

The gate shall have a Knox Box mounted to it, with keys or access cards to open the gate in the event of an emergency.

Gates shall be of the swinging or sliding type, unless approved by the Office of the Fire Marshal.

Gate components shall be maintained in an operative condition at all times and replaced or repaired when defective.

Electric gates shall be equipped with a means of opening the gate by fire department personnel for emergency access. Emergency opening devices shall be approved by Office of the Fire Marshal.

Manual opening gates shall not be locked with a padlock or chain and padlock unless they are capable of being opened by means of forcible entry tools; locking device specifications shall be submitted for approval by the Office of The Fire Marshal.

The Office of the Fire Marshal is authorized to require the installation and maintenance of gates or other approved barricades across fire apparatus access roads, trails or other access ways, not including public streets, alleys or highways. When required, gates and barricades shall be secured in an approved manner. Roads, trails and other access ways that have been closed or obstructed shall not be trespassed on or used unless authorized by the owner and the Office of the Fire Marshal.

The installation of security gates across a fire apparatus access road shall be approved by the Office of the Fire Marshal. Where security gates are installed, they shall have an approved means of emergency operation. The security gates and the emergency operation shall be maintained operational at all times. Electric gate operators, where provided, shall be listed in accordance with UL 325. Gates intended for automatic operation shall be designed, constructed and installed to comply with the requirements of ASTM F 2200.

C. Two Points of Access

The Office of the Fire Marshal may require more than one fire apparatus access road based on the potential for impairment of a single road by vehicle congestion, condition of terrain, climatic conditions or other factors that could limit access.

When two points of access are required, they shall be placed a distance apart of at least one half of the length of the maximum overall diagonal dimension of the property or area to be served, measured in a straight line between accesses. The Town shall not allow the second access point to be limited to use by emergency responders only. The second access shall always be available for public use in case the other access is blocked.

Buildings or facilities located in Commercial and Industrial Developments and exceeding 30 feet or 3 stories in height shall have at least 2 means of fire apparatus access. Buildings or facilities having a gross building area of more than 62,000 square feet shall have at least 2 means of fire apparatus access. If the buildings or facilities are provided with an approved automatic fire sprinkler system, the gross building area can be increased to 124,000 square feet with one access road.

Fire apparatus access roadways shall have a minimum unobstructed width of 26 feet in the immediate vicinity of any building or portion of building more than 30 feet in height. At least one of the required access routes meeting this condition shall be located within a minimum of 15 feet and a maximum of 30 feet from the building, and shall be positioned parallel to one entire side of the building.

Maintenance of the required access shall be considered during the planning stages and installation of Fire Department access roadways, fire hydrants, or connections. This includes the potential growth of trees and/or other vegetation over the years.

D. Fire Lanes

A plan shall be submitted for approval to the Office of the Fire Marshal which indicates all fire lanes and proposed fire lane sign placements for the project site.

The general requirement designates that any building located more than 150 feet from a public road, or which exceeds 30 feet in height and is set back more than 50 feet from a public road, shall have a fire lane.

Fire lanes shall be a minimum width of 20 feet and shall be properly marked and signed to designate the access as a “fire lane” as specified by the Office of the Fire Marshal. For specifications of the fire lane cross section, refer to Section 3 of these standards.

All fire lanes shall be marked in accordance with one of the following requirements: Continuously painted yellow striping along the fire lane with “No Parking - Fire Lane” printed with minimum 8-inch high letters at 40-foot intervals or as directed by the Office of the Fire Marshal;

Continuously painted yellow curb along the fire lane with “No Parking - Fire Lane” printed with minimum 8-inch high letters at 40-foot intervals or as directed by the Office of the Fire Marshal;

The installation of the MUTCD standard sign showing “No Parking - Fire Lane” placed at each end of the fire lane and at 50-foot intervals with arrows on the signs or a continuously painted yellow strip along both sides of the fire lane (or an additional sign beneath the fire lane sign lettered as “both sides”). Signs shall be a type R8-31 or equivalent reflective sign no less than 12 inches x 18 inches in size, white background, with the wording “No Parking - Fire Lane” in red letters.

Signs shall be posted at the following minimum height:

60 inches to the top of the sign when pedestrians do not pass by or under the sign. This application includes signs mounted on the building face, a column, or other fixed mounting surface;

84 inches to the top of the sign when the pedestrian path does pass by or beneath the sign. This application includes signs mounted on a fixed metal post located in a sidewalk and/or traffic island.

SIGN TYPE "A"

SIGN TYPE "C"

SIGN TYPE "D"

The above fire lane requirements shall also apply to all fire hydrant islands located along the face and sides of a hydrant.

Fire Lanes shall be installed and inspected in accordance with these Standard Specifications as well as the NC Fire Code. The Office of the Fire Marshal shall have the authority to designate fire lanes as deemed necessary for Fire Department access.

Roadways, driveways, and access ways shall not be marked as fire lanes without first obtaining approval from the Office of the Fire Marshal.

E. Fire Safety During Construction

There shall be no open burning within the Town's jurisdiction, unless approved by the Office of the Fire Marshal.

Fire Safety during construction, alteration, or demolition shall be maintained according to the NC Fire Code and other applicable provisions of NFPA 241.

Fire safety during construction and demolition is essential to maintain a safe and efficient project. The use of temporary heating equipment, flammable and combustible liquids storage, use and dispensing, explosives storage, handling and use, and all other general fire safety requirements shall be adhered to according to the NC Fire Code.

Vehicle access for firefighting shall be provided to all construction or demolition sites. Vehicle access shall be provided within 100 feet of temporary or permanent fire department connections. Vehicle access shall be provided by either temporary or permanent roads, capable of supporting vehicle loading under all weather conditions.

The fire protection water supply system, including fire hydrants, shall be installed and be in at least the functional status prior to placing combustible materials on the project site. If phased construction is planned, coordinated installation of the fire protection water system is permitted.

Any existing fire hydrant removed from service due to construction/demolition activities shall be placed back into service by the Owner/Developer within 14 calendar days from the date it was taken out of service or a timeframe approved by the Office of the Fire Marshal.

The Fire Department shall be notified at least 24 hours before fire hydrant(s) or water line impairment.

6.09 TESTING AND INSPECTION

Under no circumstance shall any waterline system valve be operated without prior approval by the Development Inspector. Damage to Town infrastructure resulting from illegal operation of valves shall be the responsibility of the Contractor. In addition, the Contractor shall be subject to a fine for operating a valve without prior approval.

All materials shall be inspected by the Development Inspector before they shall be allowed to be installed. Materials rejected by the Development Inspector shall be immediately removed from the job site.

The Contractor shall furnish all materials, labor, equipment, and shall pay for the water used to perform all testing and inspections to the satisfaction of the Development Inspector. The Contractor shall obtain a Water Blowoff Permit from the Town Engineering Department for use when blowing off water mains.

Water service taps shall not be made until after all water main testing is completed, and bacteriological testing is satisfactory.

A. Hydrostatic Testing

Hydrostatic testing shall be done in accordance with AWWA C600. No valve in the existing Town of Holly Springs water system shall be operated without authorization from the Construction Inspector via a Water Blowoff Permit. Each section of line which is to be hydrostatically tested shall be slowly filled with water at a rate which will allow complete evacuation of air from the line. Once the line is full, it shall be blown off at a minimum of 2.5 FPS to flush and remove any debris. The line must be pretested at 200 psi provided that 200 psi is no less than 1.25 times the stated working pressure of the pipeline measured at the highest elevation along the test section and no less than 1.5 times the stated working pressure of the pipeline measured at the lowest elevation along the test section for 2 hours prior to contacting inspector for testing. Hand pumps shall not be used for the pressure testing of water mains. Taps used for testing purposes shall be removed after testing in accordance with Section 6.11 of these Standards.

Each water line shall be tested to a pressure of 200 psi as measured at the lowest elevation of the line, provided that 200 psi is no less than 1.25 times the stated working pressure of the pipeline measured at the highest elevation along the test section and no less than 1.5 times the stated working pressure of the pipeline measured at the lowest elevation along the test section for a duration of 2 hours. The test pressure shall not exceed the thrust restraint design pressures or 1.5 times the pressure rating of the pipe or joint, whichever is less (as specified by the manufacturer). The pressure gauge used in the hydrostatic test shall be calibrated in increments of 10 psi or less. At the end of the test period, the leakage shall be measured with an accurate water meter. Note that all visible leaks are to be repaired regardless of the amount of leakage. The Development Inspector may require pressure tests to be performed in smaller segments to determine if there is a problem

with a particular section of waterline. No chlorine dosage will be allowed in line during testing.

Fire line need to be tested all the way up to the slab through the riser room by the Development Inspector.

ALLOWABLE LEAKAGE	
Pipe Size (inches)	Amount of Allowable Leakage (gallons per 1000 feet of pipe)
4	0.85
6	1.28
8	1.70
12	2.56
16	3.40
20	4.24
24	5.10

B. Chlorination

All additions or replacements to the water system shall be chlorinated before being placed in service. Such chlorination must take place under the supervision of the Construction Inspector.

Chlorination of a completed line shall be carried out in the following manner:

- 1) The specific procedure and order of testing shall follow ANSI/AWWA C651 and be approved by the Construction Inspector before beginning the chlorination process.
- 2) Taps shall be made at the control valve at the upstream end of the line and at all extremities of the line including valves.
- 3) Before the main is chlorinated, it shall be filled with potable water to eliminate air pockets and flushed to remove particulates. Flushing velocity in the main shall no be less than 3 feet per second.
- 3) Drinking water treatment chemicals and drinking water system components shall be ANSI/NSF Standard 60 and 61 compliant. In accordance with ANSI/AWWA C651 4.1.3., a solution of water containing calcium hypochlorite (HTH, 65% available chlorine by weight) shall be introduced into the line by regulated pumping at the control-valve tap. Using ANSI/AWWA C651 4.4

Continuous Feed Method of Chlorination, the solution shall be of such a concentration that the line shall have a uniform concentration of 50 ppm total chlorine immediately after chlorination.

- 4) The HTH solution shall be circulated in the main by opening the control valve and systematically manipulating hydrants and taps at the line extremities. The HTH solution must be pumped in at a constant rate for each discharge rate in order that a uniform concentration will be produced in mains. *Note that for projects that are surrounded by populated development areas, the Construction Inspector can require that the circulation of HTH solution be accompanied with mechanical pumping.*
- 5) HTH solution shall remain in lines for no less than 24 hours or as directed by the Executive Director of Utilities and Infrastructure Services.
- 6) Extreme care shall be exercised at all times to prevent the HTH solution from entering existing mains.

C. Bacteriological Sampling

All new water systems shall be valved off from the existing water system until a satisfactory bacteriological sample is obtained and the Construction Inspector has authorized the use of the new water system.

1. Free residual chlorine after 24 hours shall be at least 10 ppm or the Construction Inspector shall require that the lines be rechlorinated.
2. Flushing of lines may proceed after 24 hours, provided the free residual chlorine analysis is satisfactory. Flushing shall be continued until a chlorine test kit shows that the lines contain only the normal chlorine residual.
3. Samples for bacteriological analysis shall be collected by the Construction Inspector a minimum of 16 hours after flushing is completed. The Contractor shall furnish such help as may be required to secure the required samples. Samples shall be collected and delivered to the Utley Creek Water Reclamation Facility Laboratory or other state-approved, certified laboratory by the Construction Inspector.
4. If bacteriological test results are unsatisfactory, the Contractor shall immediately obtain another Water Blowoff Permit, rechlorinate and retest the lines, proceeding with such measures as are necessary to secure properly disinfected lines.

6.10 FIRE PROTECTION DURING CONSTRUCTION

The fire protection water supply system, including fire hydrants, shall be installed and tested prior to placing combustible materials on the project site.

6.11 IRRIGATION SYSTEMS

No mainlines or valves shall be allowed within the utility strip (between the sidewalk and curb). Lateral will be allowed and shall be placed within 1 ft of sidewalk. Pipe material for all lines within the public right of way shall be a minimum of 2 feet deep and Schedule 40 PVC or greater for all lateral irrigation lines.

Irrigation systems shall have a backflow preventer installed in accordance with Section 6.06 of these Standards. All irrigation systems are required to secure a plumbing permit from the Code Enforcement Department prior to installation and shall be inspected after installation. A separate meter is required for irrigation systems.

All irrigation line street crossings shall be contained within a ductile iron or steel encasement pipe. The Town may, in some instances, permit irrigation systems installed in the medians of Town-maintained roadways. These systems must also have french drains installed behind the curb and gutter and piped to a storm drainage collection system. These systems shall be allowed only when some permanent mechanism is established for the private perpetual maintenance of the system(s).

Wells may be kept maintained for irrigation purposes after public utility connection, if they are on the opposite side of the single-family dwelling where the public water and/or sewer service is located.

6.12 REPAIR OF WATER LINES

Joint Leaks of cast iron pipe, ductile iron pipe, and PVC pipe shall use a bell joint leak repair clamp as manufactured by Rockwell, or other approved equal.

Line Breaks or Punctures shall be repaired by a full circle repair clamp as manufactured by Rockwell, Mueller, or other approved equal.

Line Splits or Blow Outs shall be repaired by replacing the damaged section with ductile iron pipe with a cast iron coupling at each end. The following cast pipe couplings shall be used for each pipe material indicated:

A.C. Pipe - Rockwell 441 cast coupling or other approved equal
Ductile Iron Pipe - Rockwell 431 cast coupling or other approved equal
PVC Pipe - Rockwell 411 cast coupling or other approved equal

For A.C. Pipe to PVC or Ductile Iron Pipe connections, use a cast pipe coupling with different end diameters sized specifically for the pipe materials, and pipe outside diameter at each end.

Water Service Line Repairs

- A water service line severed between the water main and the water meter shall be repaired using new type K copper tubing and bronze or brass 3-piece flare unions.
- A corporation stop pulled out of a PVC pipe water main shall have a new service saddle and a new corporation stop installed on the water main.
- A corporation stop pulled out of a ductile iron pipe water main shall have a full circle repair clamp placed over the old tap hole. A new tap shall be made and a new corporation stop installed on the water main.

END OF SECTION 6.00